Tag Archives: conveyor motor

China best 40W Micro AC Gear Reversible Electric Motor for Boiler Oven Conveyor a/c vacuum pump

Product Description

40W Micro AC Gear Reversible Electric Motor for boiler oven conveyor

1. Light weight, small dimension and simple installation;
2. Wide speed ranges and high torque;
3. Low noise and high efficiency;
4. Stable and safe,long lifetime;
5. Multi-structure, various assembling methods;
6. One-stop solution with speed controller, driver, encoder, brake and transformor available.

Product Picture

Speciafication

Motor Characteristics

Motor Model Specs Output power Voltage Frequency Current Starting Torque Rated Torque Rated Speed Capacitor/Ve
W V Hz A mN.m mN.m r/min μF/VAC
GS5IK40GN-C
GS5IK40A-C
Induction 40 1-phase
220
50 0.35 367 294 1300 2.5/450
60 0.33 307 246 1550 2.5/450
GS5RK40GN-C
GS5RK40A-C
Reversible
30min
50 0.38 367 294 1300 3.0/450
60 0.4 307 246 1550 3.0/450
GS5IK40GN-A
GS5IK40A-A
Induction 40 1-phase
110
50 0.70  367 294 1300 10/250
60 0.72  307 246 1550 10/250
GS5RK40GN-A
GS5RK40A-A
Reversible
30min
50 0.76  367 294 1300 12/250
60 0.80  307 246 1550 12/250
GS5IK40GN-U
GS5IK40A-U
40 3-phase
380
50 0.24  367 294 1300
60 0.22 307 246 1550
GS5IK40GN-S
GS5IK40A-S
40 3-phase
220
50 0.4  367 294 1300
60 0.4  307 246 1550

Allowable load for the gear motor

Geared-down
parameter
Sycchronous speed
r/min 
500 300 250 200 150 120 100 75 60 50 40 35 30 25 20 15 12 10 8 7 6 5 3
Ratio  i 3 5 6 7.5 10 12.5 15 20 25 30 36 40 50 60 75 100 120 150 180 200 250 300 500
Max allowable load 40W N.m 0.72 1.18 1.43 1.77 2.4 2.94 3.53 4.28 5 6.24 7.7 8.57 9.64 9.81

Note: 

If this model is not what you want, please freely tell us about your requirement. We will provide you with a suitable motor solution and price soon.

Product Pictures

Packing & Delivery

Company Overview

About Greensky Power

HISTORY: Greensky is a mechanical brand of CHINAMFG Power Co., Ltd. With over 10 years’ mechanical  anufacturing experiences, CHINAMFG Power always strictly stands on the principle of Best Customer Satisfaction.

QUALITY: Material Inspection, Production Control, Finished Goods Test, Pre-dellivery Inspection

MISSION: “Once and forever” is our goal to serve customers in the world. Once we do business with customer, we will do business forever.

MARKET30 different countries, mainly Germany, Austria, Japan, USA and Middle-East.

DELIVERY100% on-time delivery Guaranteed.

SERVICESFast response in English, German, Japanese and Chinese languages.

OEMCustomized orders are welcome at CHINAMFG Power.

Exhibitions

Certificates

FAQ

1 Q: What’s your MOQ for each model?
A: 1unit is ok for sample testing

2 Q: What about your warranty for your gear motors?
A: One year.

3 Q: Do you provide OEM service with customer-logo?
A: Yes, we could do OEM orders, but we mainly focus on our own brand.

4 Q: How about your payment terms ?
A: TT, western union and paypal. 100% payment in advanced for orders less $5,000. 30% deposit and balance before delivery for orders over $5,000.

5 Q: How about your packing ?
A: Carton, Plywood case. If you need more, we can pack all goods with pallet.

6 Q: What information should be given, if I buy gear motors from you?
A: Rated power, gearbox ratio, input speed, mounting position. More details, better!

7 Q: How do you deliver the gear motor?
A: We will compare and choose the most suitable ways of delivery by sea, air or express courier.

We hope you enjoy cooperating with us. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Pellet Boiler, Industrial, Machinery
Speed: Low Speed
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

What is the significance of gear reduction in gear motors, and how does it affect efficiency?

Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

Significance of Gear Reduction:

1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

Effect on Efficiency:

While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China best 40W Micro AC Gear Reversible Electric Motor for Boiler Oven Conveyor   a/c vacuum pump		China best 40W Micro AC Gear Reversible Electric Motor for Boiler Oven Conveyor   a/c vacuum pump
editor by CX 2024-05-09

China supplier 6W 25W 80mm Electrical AC Induction Gear Motor for Boiler Conveyor Auto-Door with Good quality

Product Description

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Single-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China supplier 6W 25W 80mm Electrical AC Induction Gear Motor for Boiler Conveyor Auto-Door   with Good quality China supplier 6W 25W 80mm Electrical AC Induction Gear Motor for Boiler Conveyor Auto-Door   with Good quality
editor by CX 2024-05-09

China high quality Basic Customization CHINAMFG Custom Low Rpm 60rpm 40nm 12 24 36 48 V 150W 250W 450watt 1HP Brushless BLDC Gear DC Electric Motor for Screw Conveyor vacuum pump adapter

Product Description

Product Description

Feature:
A. High power range from 30W to 750W
B. Dia: 42mm-180mm
C. Easy for speed & direction adjustment
D. Rich stock and fast shipping time in 10 working days
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
J. Permanent magnet brushless dc motor
K.High-performance and stable matching driver and controller

Kindly remind: As different customers may need different motor parameter for fitting your equipment. If below motor can’t fit your need, please kindly send inquiry to us with information for rated power or torque,rated speed, and rated voltage for our new size drawing making for you. CLICK HERE to contact me. Thanks a lot!
Δ 86mm BLDC Motor with 5GN Gearbox Size Dimensions
Dimensions (Unit: mm )
Mounting screws are included with gear head.
Δ Brushless DC Motor Specification:

Power(W)

90

150

200

300

450

550

750

Motor Length(mm)

55

60

65

75

85

95

125

Motor Length(mm)

62

67

72

82

92

102

127

Motor Speed(rpm)

3000

Δ 86mm 450W BLDC Motor with 5GU Gearbox Specification:

Other Specification form:

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Motor Flange Size

Δ More Motor Flange Size to choose, if you need other size. Welcome to contact us to custom.

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 125/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

How does the voltage and power rating of a gear motor impact its suitability for different tasks?

The voltage and power rating of a gear motor are important factors that influence its suitability for different tasks. These specifications determine the motor’s electrical characteristics and its ability to perform specific tasks effectively. Here’s a detailed explanation of how voltage and power rating impact the suitability of a gear motor for different tasks:

1. Voltage Rating:

The voltage rating of a gear motor refers to the electrical voltage it requires to operate optimally. Here’s how the voltage rating affects suitability:

  • Compatibility with Power Supply: The gear motor’s voltage rating must match the available power supply. Using a motor with a voltage rating that is too high or too low for the power supply can lead to improper operation or damage to the motor.
  • Electrical Safety: Adhering to the specified voltage rating ensures electrical safety. Using a motor with a higher voltage rating than recommended can pose safety hazards, while using a motor with a lower voltage rating may result in inadequate performance.
  • Application Flexibility: Different tasks or applications may have specific voltage requirements. For example, low-voltage gear motors are commonly used in battery-powered devices or applications with low-power requirements, while high-voltage gear motors are suitable for industrial applications or tasks that require higher power output.

2. Power Rating:

The power rating of a gear motor indicates its ability to deliver mechanical power. It is typically specified in units of watts (W) or horsepower (HP). The power rating impacts the suitability of a gear motor in the following ways:

  • Load Capacity: The power rating determines the maximum load that a gear motor can handle. Motors with higher power ratings are capable of driving heavier loads or handling tasks that require more torque.
  • Speed and Torque: The power rating affects the motor’s speed and torque characteristics. Motors with higher power ratings generally offer higher speeds and greater torque output, making them suitable for applications that require faster operation or the ability to overcome higher resistance or loads.
  • Efficiency and Energy Consumption: The power rating is related to the motor’s efficiency and energy consumption. Higher power-rated motors may be more efficient, resulting in lower energy losses and reduced operating costs over time.
  • Thermal Considerations: Motors with higher power ratings may generate more heat during operation. It is crucial to consider the motor’s power rating in relation to its thermal management capabilities to prevent overheating and ensure long-term reliability.

Considerations for Task Suitability:

When selecting a gear motor for a specific task, it is important to consider the following factors in relation to the voltage and power rating:

  • Required Torque and Load: Assess the torque and load requirements of the task to ensure that the gear motor’s power rating is sufficient to handle the expected load without being overloaded.
  • Speed and Precision: Consider the desired speed and precision of the task. Motors with higher power ratings generally offer better speed control and accuracy.
  • Power Supply Availability: Evaluate the availability and compatibility of the power supply with the gear motor’s voltage rating. Ensure that the power supply can provide the required voltage for the motor’s optimal operation.
  • Environmental Factors: Consider any specific environmental factors, such as temperature or humidity, that may impact the gear motor’s performance. Ensure that the motor’s voltage and power ratings are suitable for the intended operating conditions.

In summary, the voltage and power rating of a gear motor have significant implications for its suitability in different tasks. The voltage rating determines compatibility with the power supply and ensures electrical safety, while the power rating influences load capacity, speed, torque, efficiency, and thermal considerations. When choosing a gear motor, it is crucial to carefully evaluate the task requirements and consider the voltage and power rating in relation to factors such as torque, speed, power supply availability, and environmental conditions.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China high quality Basic Customization CHINAMFG Custom Low Rpm 60rpm 40nm 12 24 36 48 V 150W 250W 450watt 1HP Brushless BLDC Gear DC Electric Motor for Screw Conveyor   vacuum pump adapter	China high quality Basic Customization CHINAMFG Custom Low Rpm 60rpm 40nm 12 24 36 48 V 150W 250W 450watt 1HP Brushless BLDC Gear DC Electric Motor for Screw Conveyor   vacuum pump adapter
editor by CX 2024-04-17

China Professional Conveyor Used High Efficient 180W 104mm AC Gear Motor for Medical Equipment vacuum pump connector

Product Description

 

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China Professional Conveyor Used High Efficient 180W 104mm AC Gear Motor for Medical Equipment   vacuum pump connector	China Professional Conveyor Used High Efficient 180W 104mm AC Gear Motor for Medical Equipment   vacuum pump connector
editor by CX 2024-04-10

China G3 Flange-Coupled Helical Gearmotor IEC Flanged Motor Gearbox helical conveyor gearbox

Product Description

G3FM flange-coupled helical geared motor is extensively used in gentle business,wth available assortment of motor energy from .1—2.2KW in our factoy. We will offer to all consumers good quality-confident goods,very good following-sale support & free of charge technological support for our mutual expansions.

Technical specs of G3FM flange-coupled helical gearmotors coupled with motors,
 

Also,the solo device of geared motor head as the picturs as follows can be provided to the customers’ specifications to be coupled with their possess motors.The specs of the motor flange are supposed to be specified to us beforehand for examining.
Regular specs of helical gearmotor unit with out motors coupled,

Samples: samples are charged,but it will be refundable by implies of deduction from the payment of the orders

Approaches of delivery: by sea or by air,DHL or Fedex,and so on (Up to ask for)

Warranty: 1 year from the day in the B/L,on appropriate procedure conditionsfree technical assistance as right after-sale service.

Bundle for shipping: onepc in carton box,then several cartons / wooden pallet or to the buyer’s actual requirements,which must be specified when confirming the buy.

Any query will be welcome,please speak to me by e-mail, or  by  my mobile no.:- for far more details and we are often prepared to provide you well.

 

To Be Negotiated 1 Piece
(Min. Order)

###

Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Type: Circular Gear

###

Samples:
US$ 80/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
To Be Negotiated 1 Piece
(Min. Order)

###

Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Type: Circular Gear

###

Samples:
US$ 80/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

Helical Gearbox

Generally, a helical gearbox consists of two gears. The two gears have cut teeth and are inserted into one another. These two gears work together to transmit torque and speed. This type of gearbox is used in a wide variety of applications.helical gearbox

Working principle

Besides being cheaper to make, helical gears have several advantages over straight-cut spur gears. Firstly, they offer a smoother operation, less vibration, and lower noise levels. They also transmit larger loads than spur gears. These gears are used in a variety of industries, such as food processing, plastic industries, and oil industries.
Another important feature of helical gears is the smooth and gradual engagement of teeth. This helps them function more smoothly, especially when working under heavy loads. This process reduces shock and backlash, and also reduces wear.
In addition to this, the helix angle is a variable that can be adjusted to suit the application. The angle is usually either left or right, and can vary based on the view.
Helical gears are usually used in enclosed gear drives, such as conveyors, blowers, and elevators. They offer a smoother operation, which makes them ideal for applications that require quiet operation. However, helical gears are less efficient at transmitting power than spur gears.
The relative contact stress (RCS) calculated for a helical gear is similar to that of a spur gear. However, the volume Vi, which is a helix-dependent quantity, is different. This volume is defined as the total volume of the helical pocket, calculated by integrating along the face width. The volume of a generic pocket is larger than that of a helical pocket without a helix.
In addition, the contact ratio is reduced. This is due to the fact that two teeth are not parallel to each other. A thick oil film prevents the teeth from making contact. This film also cools the gear tooth surfaces.
The service factor is a number that takes into account the conditions under which a gear is used. It is usually a ratio between the maximum torque and the torque produced.

Efficiency

During a recent gearbox measurement campaign, 13 commercial gearboxes were extensively tested. Efficiency was measured at nominal torque and power. The resulting efficiency maps presented in this paper show that the efficiency of each gearbox is fairly similar.
The efficiency of a gearbox depends on the gears’ teeth and the ratio between them. The lower the ratio, the higher the efficiency.
Efficiency is also affected by the load torque. The higher the load torque, the lower the efficiency. This is especially true for gearboxes with high ratios.
The power loss is also affected by the contact and overlap ratios. For gearboxes with high ratios, the difference between the efficiency of the catalog and model-based efficiency is greater than for low-ratio gearboxes. Fortunately, improvements in lubrication are closing this gap.
The helical gearbox is the most effective gearbox in the industry. It transfers motion between parallel configurations and has less noise than spur gears. These gears engage gently and smoothly, so they are less prone to wear and tear. They also allow for greater power carrying capacity.
Although helical gears are effective, they are more expensive than traditional gears. However, the cost savings can be significant over time. It is important to consider the advantages of a helical gearbox before choosing a gearbox for your application.
When comparing the efficiency of a helical gearbox to that of a worm gearbox, the worm gearbox is more efficient. However, the difference in efficiency is not as great as many other gearboxes.
The efficiency of a helical gearbox is also affected by the speed of the gears. The gearbox must have adequate lubrication for bearings. It is also important to consider the space requirements in the drive line.helical gearbox

Applications

helical gearbox applications are widespread and they are used in many industries. Some of the applications include the printing industry, the rubber industry, the plastics industry, the cement industry, the earth-moving industry, and the chemical industry.
helical gearboxes are also used for conveyors and elevators. They are very durable and they can carry larger loads. They are also quieter than straight cuts. They are also used in many automotive transmissions.
helical gearboxes transmit power between two parallel shafts. They are a good substitute for spur gears. They are compact and they reduce vibration and noise. They are also very durable and they can work in non-parallel shafts.
The most common application is in the automotive industry. Helical gearboxes are also used in other industries. They are very useful in elevators, conveyors, and other heavy industrial settings. They also provide a high level of speed reduction and they are commonly used in automation control systems. They are also used in the mining industry and the cement industry.
helical gearboxes can be fabricated with various modifications. This is important because some industries may require different gearboxes.
Helical gears have a higher number of teeth. This leads to less wear and tear. They are also less noisy than spur gears. Their ability to generate a large thrust force is what makes them ideal for high-speed applications. They are also able to distribute load among several axes. They are also used in high shock and vibration applications.
helical gearboxes work at a higher efficiency than spur gears. However, the manufacturing costs for helical gears are greater than for spur gears.
helical gearboxes also have the advantage of transferring power between right-angle shafts. They can work in conjunction with crossed axis gears, which eliminate shock loading.

Variations

Several variations of helical gearbox are available in the market for different industries. They are widely used in automobile transmissions and other industries. They are quieter than spur gears. They are also durable and are highly efficient. However, they can cause higher friction and wear.
Helical gears are made of teeth that twist around a cylindrical gear body at an angle. The angle at which the gear teeth are cut is called the helix angle. The helix angle can be adjusted to fit the gear and its surroundings.
The helix angle also determines how much axial force the gear produces. A larger helix angle will generate more axial force. This increase in axial force must be absorbed by the bearings. The pressure angle also has a direct impact on the normal force and curvature radii of the tooth.
Helical gears can be mounted in parallel or crossed configuration. Helical gears connected in parallel require the same pitch and pressure angle to work correctly. Helical gears connected in crossed configuration can operate more quietly and smoothly than spur gears. However, they can also be used to transmit higher torques.
Helical gears are also available in single and double helical designs. Single helical gears are produced with the same tools and equipment as spur gears. Unlike spur gears, single helical gears have more surface contact. They are also better for precision drives.
Double helical gears are also called herringbone gears. They are produced by cutting a groove between two teeth. They can eliminate axial forces and are also used to provide high load carrying capacity.
Helical gears are commonly used for low power transmission applications. They also provide an alternative for connecting parallel and non-parallel shafts. They are also used in high speed applications.helical gearbox

Tool tip radius

Among the many parameters that are used in a helical gearbox design, the tooth tip radius is probably the most important, albeit only because it is one of the least intuitive. The best way to estimate the diameter of a helical gear tooth is to use a tooth reference profile as the basis for the calculation. A similar procedure is used to calculate the helix angle. A tool tip that is too small will result in a tooth that undercuts, which is a problem if you have a gear that has a high number of teeth and you want to reduce the chance of tooth failure.
For the gear buffs, there are many helical gearbox tools and processes, the tip diameter being but one of them. Luckily for gear design geeks, there is a lot more to the helical gearbox than meets the eye. For example, a helical gear tooth is a three-dimensional surface, so its shape and function can be computed mathematically or numerically.
In addition to a tooth tip that flies by the seat of your pants, the helical gearbox is also the product of a manufacturing process. The main culprit is the profile shift, which is the distance between the gear pitch diameter and the datum line of the cutting tool. While a gear designer could choose to ignore this issue, it is often a design consideration for the benefit of maximizing contact ratios. This means that the gear teeth must be able to withstand the torque of their respective gear trains.
A helical gear is a geometric package, and the best way to package the gears is to minimize tooth bending strength while maximizing tooth bending stiffness. To do this, you must limit the thickness of your tooth tip. This is usually accomplished with a tooth profile that is shaped to match the tooth contour of the gear it is intended to replace.
China G3 Flange-Coupled Helical Gearmotor IEC Flanged Motor Gearbox     helical conveyor gearboxChina G3 Flange-Coupled Helical Gearmotor IEC Flanged Motor Gearbox     helical conveyor gearbox
editor by czh 2023-01-27

China Coaxial Parallel Shaft Gear Motor Helical Motor Gearbox for Conveyor Belt helical gears buy

Product Description

Coaxial Parallel Shaft Gear Motor Helical Motor Gearbox for Conveyor Belt

Features:
1. Compact structure and simple assembly;
2. Wide speed ranges and high torque;
3. Low noise, good sealing performance, high efficiency;
4. Stable and safe, long lifetime, universal;
5. Multi-structure, various assembling methods

Product photo:

 

Specification:

                                                                  ANG Helical Gear Motor
Model R17 ~ 187, F37-177, K37-187, S37-97
Input power 0.06kw ~ 250kw
Input speed 750rpm ~ 3000rpm
Reduction ratio 1/1.3 ~ 1/27000
Input motor AC (1 phase or 3 phase) / DC / BLDC motor
Install type Foot / Solid shaft / Hollow shaft / Output flange…
Efficiency 94% ~ 98 % for R F K series
Material of housing die-cast aluminum / Cast iron / Stainless steel
Precision of gear Accurate grinding, class 6
Heat treatment Carburizing and quenching
Accessories Brake / Flange / Motor adapter / Torque arm …

FAQ

Q: Can you make the gear unit with customization?
A: Yes, we can customize per your request, like flange, shaft, configuration, material, etc.

Q: Do you provide samples?
A: Yes. The sample is available for testing.

Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.

Q: What’s your lead time?
A: Standard products need 5-30days, a bit longer for customized products.

Q: Do you provide technical support?
A: Yes. Our company have design and development team, we can provide technical support if you
need.

Q: How to ship to us?
A: It is available by air, or by sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with a different currency, including USD, EUR, RMB, etc.

Q: How can I know the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours.
 

US $100-300
/ Piece
|
1 Piece

(Min. Order)

###

Application: Industrial
Speed: Constant Speed
Number of Stator: Single or Three Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4

###

Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

                                                                  ANG Helical Gear Motor
Model R17 ~ 187, F37-177, K37-187, S37-97
Input power 0.06kw ~ 250kw
Input speed 750rpm ~ 3000rpm
Reduction ratio 1/1.3 ~ 1/27000
Input motor AC (1 phase or 3 phase) / DC / BLDC motor
Install type Foot / Solid shaft / Hollow shaft / Output flange…
Efficiency 94% ~ 98 % for R F K series
Material of housing die-cast aluminum / Cast iron / Stainless steel
Precision of gear Accurate grinding, class 6
Heat treatment Carburizing and quenching
Accessories Brake / Flange / Motor adapter / Torque arm …
US $100-300
/ Piece
|
1 Piece

(Min. Order)

###

Application: Industrial
Speed: Constant Speed
Number of Stator: Single or Three Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4

###

Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

                                                                  ANG Helical Gear Motor
Model R17 ~ 187, F37-177, K37-187, S37-97
Input power 0.06kw ~ 250kw
Input speed 750rpm ~ 3000rpm
Reduction ratio 1/1.3 ~ 1/27000
Input motor AC (1 phase or 3 phase) / DC / BLDC motor
Install type Foot / Solid shaft / Hollow shaft / Output flange…
Efficiency 94% ~ 98 % for R F K series
Material of housing die-cast aluminum / Cast iron / Stainless steel
Precision of gear Accurate grinding, class 6
Heat treatment Carburizing and quenching
Accessories Brake / Flange / Motor adapter / Torque arm …

Helical Gearbox

Depending on the helical gearbox, it can be either Crossed-axis or Inline. Basically, helical gearboxes are composed of a set of toothed gears that mesh with other toothed parts to transmit torque and speed to other parts of the machine.helical gearbox

Right angle helical gearboxes

Choosing the right angle gearbox can be difficult. This is because the design and specifications will depend on the type of application. The right gearbox can make or break the efficiency of the system. For example, a right angle gearbox will need to be corrosion resistant if it is used in a washdown application. It may also require special grease for use in cold temperatures.
There are many different types of right angle gearboxes. The types include worm, hypoid, and spiral bevel gearboxes. The most common are worm gearboxes. These are a great option for applications that need high torque and power. However, they are not as efficient as spur gears.
Helical gearboxes are ideal for heavy-duty industrial applications such as conveyors, blowers, and elevators. They are quiet and have better speed capabilities than spur gears. They can handle larger loads because of their gradual engagement. They are also capable of adjusting the rotation angle by 90 degrees. They are also more efficient at high speeds.
Spiral bevel gearboxes require more precision to manufacture. They are also more expensive to produce. This is because the teeth need to be drilled and shaped to fit the shafts. The gearbox needs to be designed with tight tolerances and requires basic lubrication. Its operating cycle is long.
Helical gearboxes can be used in conjunction with other gearboxes. For example, the output shaft may be a hollow shaft, or it may be designed with dual counter-rotating shafts. They can also be designed to operate in either a clockwise or counter-clockwise direction.
Right angle gearboxes are ideal for high-speed applications. They require less maintenance than other industrial components. They may require corrosion resistant plating or stainless steel shafts. If you are considering a right angle gearbox, check with a distributor to see what types of products are available. A representative will be able to help you with installation. They may also offer custom gearbox solutions to fit your needs.
A gearbox is made up of four main components. These components include the input shaft, the output shaft, the gear, and the backlash.

Crossed-axis helical gears

Normally, helical gearboxes are used to increase torque between two rotating shafts. Compared to other types of gearboxes, helical gearboxes offer greater speed and power carrying capacity. They are also quieter and smoother in operation. These gearboxes are used in many industries such as food processing, plastic, rubber, and oil industries. These gears also have the advantage of being cheaper than spur gears.
These gears are designed with special teeth that are positioned at an angle to the face of the gear. As they rotate, the teeth engage gradually. They have longer teeth, which allow them to carry heavy loads. The contact area also increases as the gears rotate.
A cross axis helical gearbox is one of the most common types of gearboxes. This gearbox has an advantage over spur gears, since it uses bearings to support the thrust load. It can also adjust the rotation angle by 90 degrees. These gearboxes are typically used to drive automobile oil pump/distribution shafts. They are also used to drive blowers. They have a large thrust force.
The cross axis helical gearbox has the advantage of using bearings to support the thrust load. However, it also has the disadvantage of using a large amount of bearings. In addition, these gears are not suitable for speed reduction beyond 1:2.
Thermoplastic crossed axis helical gears are a convenient solution for high volume applications. These gears are self-locking and offer high torque. These gears are also very durable. They are also available in a variety of configurations and sizes. They are used in a wide range of industries, including the textile industry. The output torque of these gears is also very high.
Crossed helical gears are also used to transmit motion and power between perpendicular but non-intersecting shafts. To achieve this, two mating helical gears must have the same helix angle, pressure angle, and normal pitch. They should also be mounted on perpendicular but non-intersecting, parallel shafts.
To calculate the real radial pitch of a gear, the angle of cut is measured. The gear teeth are then cut at an angle to the face of the gear. The helix angle is also measured.helical gearbox

Inline helical gears

Unlike spur gears, helical gears have a large surface contact and are characterized by low noise and large torque. Moreover, helical gears also have a high degree of meshing performance. They are also compact and durable.
As the name suggests, helical gears are produced using hard steel teeth. They are also hobbed to ensure smooth running and accurate surface finish. In addition, all gearing is ground for increased efficiency.
Inline helical gearboxes are used in a number of applications, including waste water systems and in solvent extraction. They are also used in industries like power plants and food & tobacco. They have good efficiency and are low in cost. They also have interchangeability and high durability. They can be installed in a single piece aluminum alloy housing. They can also be foot mounted or flange mounted. They are available in single stage and three stage constructions.
Helical gearboxes are typically used in high-load applications, such as in cement and waste water systems. They are also suitable for industrial applications, including in manufacturing. They are also used in applications where there is a large speed variation range. They are suitable for a wide temperature range, from -10 degC to 40 degC.
A helical gearbox has a high degree of interchangeability, and can be installed with a wide range of motors. They are also available in flame proof versions. They can also be supplied with an integrated output flange. They have standard IEC inputs, making them easy to install and operate. They also have a removable inspection cover, which allows periodic inspection of gearing. They can also be supplied with integral mounting bases.
The transmission ratio of helical gearboxes is finely graded to meet different working conditions. They also have an output torque that ranges from 1.4-250. They are also available in a modular model, which allows them to be produced in an economical manner. They can also be installed with a standard IEC input, which makes them easy to fit with any IEC motor. They also have a permanent nameplate, which indicates the ratio and the output torque.helical gearbox

Helix angle

Using a helical gearbox is a more economical and efficient way of creating a gearbox. It is also beneficial for production because it allows for more interchangeable components. It can also be used in the oil and plastic industries. It has advantages over conventional gears because it runs quieter.
The helical gearbox is a type of gearbox that uses a helical cut on the teeth of the gears. It carries more surface contact than conventional gears, which increases the power carrying capacity. It is also more durable and quieter than conventional gears.
The helical gearbox is generally used in enclosed gear systems because it allows for higher tooth overlap and smoother performance. It also eliminates thrust forces. The helical gearbox can be made of two helical sections that are close together. It is common to use double helical gearboxes in enclosed gear systems. The gears can be ground and hardened.
The radial pitch of helical gears is about eight millimeters. In the helical gearbox, the radial pitch of the gears is the same as the pitch of the spur gears. Using the same tooth cutting tools, it is possible to make helical gears more economically.
The pitch of the helical gearbox will vary with the helix angle. Typically, the helix angle is between 15 and 30 degrees. The pitch will also change with the number of teeth in the spur gear. The pitch will increase when the number of teeth increases.
The pitch is also affected by the pressure angle of the tooth. The pressure angle affects the normal force and curvature radii. The length of the helical gear contact line decreases as the pressure angle increases. This can also be seen when considering contact on the tooth surface. The helix angle is also important when calculating the forces between the helical gears.
It is important to understand that helical gears generate axial forces within the gear-mesh. These forces need to be supported by bearings. They also generate heat. This heat is also detrimental to the efficiency of the gear. It can also cause power loss.
China Coaxial Parallel Shaft Gear Motor Helical Motor Gearbox for Conveyor Belt     helical gears buyChina Coaxial Parallel Shaft Gear Motor Helical Motor Gearbox for Conveyor Belt     helical gears buy
editor by czh 2022-12-05

China OEM High Quality Electric Motor Speed Reducer Greenhouse Gear Motor For Conveyor Curtain Motor with Hot selling

Warranty: 1year
Model Number: Runfa-M
Type: Asynchronous Motor
Frequency: 50Hz, 50HZ/60HZ
Phase: Three-phase
Protect Feature: Totally Enclosed
AC Voltage: 380v/customzatied
Efficiency: IE 2
Product Name: Three-phase Asynchronous Motor
Usage: Greenhouse shading system Roller
Application: Automation Control System
Voltage: 3Phase 380
Packaging Details: Components are usually packed in corrugated boxes or cartons. And also, some special package can be customized to meet clients’ needs.
Port: HangZhou Port

Product introduction
Motor Gearboxes for Greenhouse Ventilation with mounted frequency controllers are maintenance-free, compact drive units for operating indirect ventilation systems in greenhouses. These motor gearboxes enable a system to be driven at both “low” (normal) and “high” speed. These speeds are defined using programmable parameter settings in the frequency controller. The motor gearboxes are supplied pre-programmed; all parameters of the frequency controller are preset to standard values. Using the optional manual console, these parameters can quickly and easily be adjusted to match operational needs.
Product descriptionRated PowerRated VoltageRotational Speed Of Output ShaftAeraFrequencyOutput speed0.37KW380V/220V (3 phrase) Customized5.2r/min≥1000sqm50Hz Customized250Nm0.55KW380V/220V (3 phrase)Customized5.2r/min1000-1500 sqm50Hz Customized400Nm0.75KW380V/220V (3 phrase)Customized5.2r/min1500-2000 sqm50Hz Customized400Nm
Features

  1. Extremely long lifespan and Compact and powerful
  2. Self-braking mechanism and Safe and reliable
  3. Options for additional accuracy and Easy to install
  4. A wide range of models and Models for specific purposes
  5. Easy to program and High protection rating

Product detail

more
Company Information
HangZhou CZPT Technology Co., Ltd. is affiliated to ZheJiang CZPT Group and is located in HangZhou, the hometown of vegetables in China. The company is committed to the design and development of large-scale agricultural parks, the design and development and construction of various greenhouses, the design, processing and production of greenhouse skeletons, vegetable soilless cultivation technology, smart agriculture, etc. Modern agricultural industry high-tech service enterprise.

NameQuamtityVerifiedSawing Machine2Hot dip galvanized pipe cuttingBender5Hot dip galvanized accessories processing, flume processingShearing Machine
3Shear profile, processing profile shape, sizeBending Machine3Bending treatment hot dip galvanized round pipe, square pipeStamping Machine9Greenhouse accessories punching, plate punching, etcLaser Cutting Machine1Fine cutting of pipes and plates, cutting of special fittings

Buyer Feedback
We partnered with Linen Farms LLC for a medical hemp greenhouse in Oklahoma.The first phase is a 15,000-square-meter multi-span glass greenhouse, which will be completed in March 2571. The second phase is currently progressing in an orderly manner.The quality of the first batch of products received has improved by 15%, which is particularly outstanding among industry associations. The company will cooperate with 23 industry members over the next 3 years.The first phase of Uzbekistan Park will build 6 multi-span film greenhouses with a total area of 40,000 square meters, and 1 multi-span PC greenhouse with an area of 5,000 square meters. There are 46 tunnel greenhouses with a total area of 18,400 square meters. It is the company’s first overseas park construction project in recent years. , is also the first government bidding project to be constructed. It is the company’s benchmark park in Uzbekistan. The park has now been put into operation, providing more than 1,000 tons of vegetables to local residents every year.
Botswana – Exhibition ClientUS customer visitUzbekistan customer visit
Packaging & Shipping

FAQ1.Are you trading company or factory?
We are professional greenhouse and related machines manufacturer. We can offer alltypes of greenhouse products with optional customized service.
2.What are your main products?Intelligent control system for greenhouse/warm winter solar greenhouse /film/glassgreenhouse with many options (such as cooling system/shadingsystem/hydroponicsgreenhouse…)
3.What’s your advantages?Professional: Many years experience inproducing materials/machines and offeringtechnical projects services on agriculture greenhouses.Quality assurance: Strict quality controlsy stemto offer quality assurance.On-time delivery:Complete logistic system can offer you on-delivery and safeservice.
4.Can I get samples?Some parts on hand can be sent to you for free.Transportation cost will be required.
5.Can I get drawing pictures according to my request?Please let me know your thoughts.Our design team can make out perfect drawing imagesfor you reference.

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Motor

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China OEM High Quality Electric Motor Speed Reducer Greenhouse Gear Motor For Conveyor Curtain Motor  with Hot sellingChina OEM High Quality Electric Motor Speed Reducer Greenhouse Gear Motor For Conveyor Curtain Motor  with Hot selling